Dexorgen uses ACTOne Technology, the key platform for development of Cell Based Assay for GPCR and PDE.

It is based upon a modified cyclic nucleotide-gated (CNG) ion channel as a biosensor of cAMP activity in live cells. This channel responds in real-time to increases or decreases in intracellular cAMP levels by coordinately altering cation flux (e.g., calcium, potassium or sodium), which can be measured by calcium-sensitive fluorescent indicators, or by Dexorgen’s optimized membrane-potential dye on broadly-available plate readers or on single-cell imagers. By juxtapositioning this biosensor adjacent to adenylyl cyclase, the enzyme responsible for synthesis of cAMP, in the membrane of cells that also express the GPCR target of interest, the biosensor provides ultrasensitive responses to cAMP fluctuations (Rich et. al., J. Gen. Physiol. 2000;116:147–161). The technology platform enables live-cell GPCR screening or deorphanization of agonists, antagonists and allosteric modulators of Gs, Gi or Gq-coupled receptors in 1536-well formats. Because the technology directly measures cAMP through CNG channels, it detects GPCR activity through its nature pathway. No engineering or modifications to the G protein is required. The assay is highly sensitivity to intracellular cAMP change. It has excellent signal to noise ratio and high z’ value. It is also cost-effective and easy to use. Preliminary evidence has been developed that supports the ability to freeze these cell lines in ready-to-screen format, and for enabling receptor profiling for specificity assessment.

The cyclic nucleotide phosphodiesterases (PDEs) are enzymes that catalyze hydrolysis of 3′, 5′-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5′-nucleotide monophosphates. These enzymes play important roles in controlling cellular concentrations of cyclic nucleotides and have central roles in a variety of intracellular signaling events. As such, phosphodiesterases are emerging as a promising class of drug targets, particularly in asthma, cardiovascular and CNS diseases. Currently PDE inhibitors are identified in screens employing biochemical assays using pure substrates (cAMP or cGMP) and purified recombinant PDE enzymes. We have leveraged the CNG channels in the ACTOne Technology to detect intracellular cAMP/cGMP changes and developed the first commercially available live-cell PDE inhibitor assays.

To measure cAMP specific PDE activity, a constitutively active Gs-coupled GPCR is over-expressed in the cells containing CNG channels to stimulate adenylyl cyclases, leading to cAMP synthesis. The produced cAMP is hydrolyzed by intracellular PDE so the steady cAMP is kept at low level. Upon the PDE activity inhibition, the cellular cAMP level rises quickly and is measured by the CNG biosensor. This assay has been used to identify inhibitors of PDE4 in a 1536 well format (Titus et al, J Biomol Screen 2008; 13: 609-618).

To assay cGMP specific PDE activity, soluble guanylate cyclase (sGC) was stably transfected into the cells containing CNG channels. Cellular cGMP can be increased by the sGC stimulator, BAY 41-2272. In the presence of cGMP specific PDE, the produced cGMP is hydrolyzed quickly by PDE so the steady level of cGMP is low. By adding a cGMP specific PDE inhibitor, the cGMP can accumulate quickly and activate CNG channels.